Activation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) by free fatty acid receptor 1 (FFAR1/GPR40) protects from palmitate-induced beta cell death, but plays no role in insulin secretion.

نویسندگان

  • Madhura Panse
  • Felicia Gerst
  • Gabriele Kaiser
  • Charlott-Amélie Teutsch
  • Rebecca Dölker
  • Robert Wagner
  • Hans-Ulrich Häring
  • Susanne Ullrich
چکیده

AIMS GPR40/FFAR1 mediates palmitate-induced stimulation of insulin secretion but its involvement in lipotoxicity is controversial. Our previous observations suggest that FFAR1/GPR40 agonists protect against lipotoxicity although the underlying mechanism remains elusive. The present study examines the role of ERK1/2 and GPR40/FFAR1 in palmitate-induced stimulation of insulin secretion and beta cell death. METHODS Insulin secretion of INS-1E cells was measured by radioimmunoassay. Protein phosphorylation was examined on Western blots. Apoptosis was assessed by TUNEL staining. RESULTS Palmitate and the GPR40/FFAR1 agonist TUG-469 increased phosphorylation of ERK1/2 at low (2.8 mmol/L) and high (12 mmol/L) glucose but stimulated insulin secretion only at high glucose. The MEK1 inhibitor PD98059 significantly reduced phosphorylation of ERK1/2 but did not reverse the stimulation of secretion induced by glucose, palmitate or TUG-469. PD98059 rather augmented glucose-induced secretion. Prolonged exposure to palmitate stimulated apoptosis, an effect counteracted by TUG-469. PD98059 accentuated palmitate-induced apoptosis and reversed TUG-469-mediated inhibition of cell death. CONCLUSIONS Activation of ERK1/2 by palmitate and GPR40/FFAR1 agonist correlates neither with stimulation of insulin secretion nor with induction of apoptosis. The results suggest a significant anti-apoptotic role of ERK1/2 under conditions of lipotoxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Free Fatty Acids on Insulin and Glucagon Secretion

Kristinsson, H. 2017. Effects of Free Fatty Acids on Insulin and Glucagon Secretion. – with special emphasis on the role of Free fatty acid receptor 1. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1320. 54 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9867-2. Prevalence of type 2 diabetes mellitus (T2DM) is still rising and even so in the ...

متن کامل

GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo.

Long-chain fatty acids amplify insulin secretion from the pancreatic beta-cell. The G-protein-coupled receptor GPR40 is specifically expressed in beta-cells and is activated by fatty acids; however, its role in acute regulation of insulin secretion in vivo remains unclear. To this aim, we generated GPR40 knockout (KO) mice and examined glucose homeostasis, insulin secretion in response to gluco...

متن کامل

Free fatty acid receptor 1 (FFAR1/GPR40) signaling affects insulin secretion by enhancing mitochondrial respiration during palmitate exposure.

Fatty acids affect insulin secretion via metabolism and FFAR1-mediated signaling. Recent reports indicate that these two pathways act synergistically. Still it remains unclear how they interrelate. Taking into account the key role of mitochondria in insulin secretion, we attempted to dissect the metabolic and FFAR1-mediated effects of fatty acids on mitochondrial function. One-hour culture of M...

متن کامل

Reevaluation of Fatty Acid Receptor 1 as a Drug Target for the Stimulation of Insulin Secretion in Humans

The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific...

متن کامل

Dysfunctional GPR40/FFAR1 signaling exacerbates pain behavior in mice

We previously showed that activation of G protein-coupled receptor 40/free fatty acid receptor 1 (GPR40/FFAR1) signaling modulates descending inhibition of pain. In this study, we investigated the involvement of fatty acid-GPR40/FFAR1 signaling in the transition from acute to chronic pain. We used GPR40/FFAR1-knockout (GPR40KO) mice and wild-type (WT) mice. A plantar incision was performed, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 35 4  شماره 

صفحات  -

تاریخ انتشار 2015